Ydinvoima - toimintaperiaate

Ydinvoimalassa syntyy energiaa atomiydinten haljetessa. Prosessia kutsutaan fissioksi, ja se lämmittää vettä, jolloin muodostuu höyryä. Höyry pyörittää turbiinia, joka puolestaan käyttää sähköä tuottavaa generaattoria.

Fissio tapahtuu reaktorissa. Prosessin aikana halkaistaan uraaniatomien ytimiä atomeihin törmäävien neutronien avulla. Kun atomiydin halkeaa, se lähettää liikkeelle uusia neutroneja, jotka voivat halkaista uusia atomiytimiä. Näin syntyy ketjureaktio. Ydinvoimalan polttoaineena käytetään yleensä uraani-235:ttä, joka on alkuaine uraanin isotooppi. Prosessia hallitaan käyttämällä erilaisia ohjaussauvoja vapautuvien neutronien imemiseen niin, että fissio joko hidastuu tai keskeytyy kokonaan.

Ydinreaktorityyppejä on useita, mutta tavallisimpia ovat paine- ja kiehutusvesireaktorit.

Painevesireaktori

Suurennettu kuva (englanniksi)

Reaktori sisältää vettä ja uraania. Uraaniatomien haljetessa vesi lämpiää jopa 325 °C:seen. Korkeaa painetta reaktorin sisällä säädellään paineastian avulla, ja se estää veden kiehumisen.

Reaktorista lämmin vesi siirretään höyrygeneraattoriin, joka on suuri lämmönvaihdin. Höyryä muodostuu, koska paine on täällä pienempi, ja höyry johdetaan seuraavaksi turbiiniin. Höyryn paine saa turbiinin siivet pyörimään. Turbiini käyttää sähköä tuottavaa generaattoria. Sen jälkeen höyry johdetaan lauhduttimeen, joka koostuu lukuisista pienistä putkista. Putkien läpi pumpataan merivettä, ja kohdatessaan kylmät putket höyry kondensoituu ja muuttuu jälleen vedeksi. Merivesi pumpataan takaisin mereen, missä se on keskimäärin 10 °C lämpimämpää kuin lauhduttimeen mennessään.

Vesi pumpataan höyrygeneraattorista takaisin reaktoriin, missä se jälleen lämpiää. Vesi kiertää reaktorissa siis suljetussa kierrossa siten, että höyrygeneraattorin vesi tai jäähdytykseen käytettävä merivesi eivät kumpikaan joudu kosketuksiin reaktorin sisällä olevan veden kanssa.

Kiehutusvesireaktori

Suurennettu kuva (englanniksi)

Reaktori sisältää vettä ja uraania. Uraaniatomien haljetessa vapautuu energiaa, joka saa reaktoriastiassa olevan veden kiehumaan ja höyrystymään. Höyry johdetaan edelleen turbiiniin. Höyryn paineen johdosta turbiinin siivet alkavat pyöriä. Turbiini käyttää höyrygeneraattoria, joka tuottaa sähköä. Sähkö kuljetetaan voimajohtoja pitkin käyttäjille.

Kun höyryn energia on siirtynyt turbiiniin, se siirretään edelleen lauhduttimeen, joka koostuu ohuista putkista. Putkien läpi pumpataan merivettä, ja kun höyry kohtaa putken ulkopinnan, se jäähtyy ja kondensoituu, eli siitä tulee vettä. Merivesi pumpataan takaisin veteen, missä se on 10 °C lämpimämpää kuin silloin, kun se otettiin sisään.

Lauhduttimesta tuleva vesi pumpataan takaisin reaktoriin, missä se jälleen lämpiää, jolloin alkaa uusi kierto. Reaktorijärjestelmässä oleva vesi muodostaa suljetun kiertokulun, eikä merestä otettava jäähdytysvesi siksi joudu koskaan kosketuksiin reaktorista peräisin olevan höyryn kanssa.

Useita esteitä ja turvajärjestelmiä

Fissioprosessin aikana reaktorissa syntyy ionisoivaa säteilyä. Jotta säteilystä ja radioaktiivisista aineista ei aiheutuisi haittaa ympäristölle, voimaloissa on käytössä useita toisistaan riippumattomia esteitä ja turvajärjestelmiä.

Itse polttoaine on yksi este, koska keraamiset uraanipelletit liukenevat heikosti veteen ja ilmaan (verrattuna siihen, että veteen liuotettaisiin tiiliskivi). Se myös sitoo radioaktiivisia aineita. Pelletit sulavat vasta 2 800 °C:n lämpötilassa.

Uraanipelletit on suljettu kapseliputkiin, jotka on valmistettu zirkaloy-nimisestä metalliseoksesta, jolla on hyvin reaktorikäyttöön sopivat ominaisuudet. Putket ovat täysin kaasutiiviitä.

Kolmannen esteen muodostavat reaktoriastia ja siihen kuuluva putkisto. Reaktoriastia on valmistettu 15–20 cm paksusta teräksestä ja painaa noin 400 tonnia.

Reaktoria ympäröi reaktorin suojarakenne, joka muodostuu metrin paksuisesta betonista ja valetusta, kaasunpitävästä teräslevystä.

Viides este on itse rakennus, joka on rakennettu kestämään suuria voimia sekä sisältä että ulkoa päin.

Esteiden lisäksi käytössä on useita turvajärjestelmiä reaktorin sydämen jäähdyttämiseksi ja radioaktiivisten aineiden leviämisen estämiseksi.

 

Suojakuoret

Suurennettu kuva (englanniksi)

Turvasuodatin antaa lisäsuojaa

Vaikka kaikki turvajärjestelmät lakkaisivat toimimasta, radioaktiivisuus ei saa levitä ympäristöön. Siksi käytössä on erikoissuodattimia, jotka huolehtivat vähintään 99,9 prosentista radioaktiivisia aineita.

Jos paine reaktorikuoren sisällä nousee liian suureksi, joudutaan ehkä päästämään kaasuja ja höyryjä suodattimeen. Suodattimen tärkein tehtävä on radioaktiivisten hiukkasten ja radioaktiivisen jodin päästöjen minimoiminen.

Sen jälkeen höyry ja kaasut pestään suodatinaltaassa, niin sanotussa neutralointiyksikössä. Radioaktiiviset hiukkaset jäävät neutralointiyksikön veteen, kun taas puhdistetut kaasut päästetään ulos kivisuodattimen kautta.

Viimeksi päivitetty : 2014-03-11 16:38